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ABSTRACT
Graph Neural Network (GNN) based recommender systems have
been attracting more and more attention in recent years due to their
excellent performance in accuracy. Representing user-item interac-
tions as a bipartite graph, a GNNmodel generates user and item rep-
resentations by aggregating embeddings of their neighbors. How-
ever, such an aggregation procedure often accumulates information
purely based on the graph structure, overlooking the redundancy of
the aggregated neighbors and resulting in poor diversity of the rec-
ommended list. In this paper, we propose diversifying GNN-based
recommender systems by directly improving the embedding genera-
tion procedure. Particularly, we utilize the following three modules:
submodular neighbor selection to find a subset of diverse neighbors
to aggregate for each GNN node, layer attention to assign attention
weights for each layer, and loss reweighting to focus on the learn-
ing of items belonging to long-tail categories. Blending the three
modules into GNN, we present DGRec (Diversified GNN-based
Recommender System) for diversified recommendation. Experi-
ments on real-world datasets demonstrate that the proposedmethod
can achieve the best diversity while keeping the accuracy compara-
ble to state-of-the-art GNN-based recommender systems. We open
source DGRec at https://github.com/YangLiangwei/DGRec.

CCS CONCEPTS
• Information systems→Recommender systems;Collabora-
tive filtering.
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1 INTRODUCTION
We live in an era of information overflow [26], with data cre-
ated every moment too large to digest in time. Recommender sys-
tems [32, 34–36] target mitigating the problem by providing people
with the most relevant information in the massive data. Recom-
mender systems play an essential role in our daily life, such as the
news feed [40], music suggestions [6], online advertising [10], and
shopping recommendations [12]. To maximize the utility of recom-
mendation systems, accuracy is often the only criterion measuring
how likely the users would interact with given items. Companies
and researchers have been building sophisticated methods [38, 41]
to optimize accuracy during all steps in recommender systems.

However, a well-designed recommender system should be eval-
uated from multiple perspectives, e.g. diversity [49]. Accuracy can
only reflect correctness, and pure accuracy-targeted methods may
lead to the echo chamber/filter bubble [11] effects, trapping users in
a small subset of familiar items without exploring the vast majority
of others. To break the filter bubble, diversification in recommender
systems is receiving increasing attention. Through an online A/B
test, research [16] shows that the number of users’ engagements
and the average time spent greatly benefit from diversifying the rec-
ommender systems. Diversified recommendation targets increase
the dissimilarity among recommended items to capture users’ var-
ied interests. Nevertheless, optimizing diversity alone often leads to
decreases in accuracy. Accuracy and diversity dilemma [50] reflects
such a trade-off. Therefore, diversified recommender systems aim
to increase diversity with minimal costs on accuracy [2, 5, 49].

Graph-based recommender systems [34] have attracted more
and more research attention. Graph-based methods have several ad-
vantages. Representing users’ historical interactions as a user-item
bipartite graph can give us easy access to high-order connectivi-
ties. Graph neural network [30] is a family of powerful learning
methods for graph-structured data [13, 19]. The common practice
of graph-based recommender systems is designing suitable graph
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neural networks to aggregate information from the neighborhood
of every node to generate the node embedding. This procedure also
provides opportunities for diversified recommendation [49]. Firstly,
the user/item embedding is easily affected by its neighbors, and
we can manipulate the choice of neighbors to obtain a more diver-
sified embedding representation. Secondly, the unique high-order
neighbors of each user/item node can provide us with personalized
distant interests for diversification, which can be naturally captured
by stacking multiple GNN layers.

Achieving diversified recommendations using GNNs comes with
the following challenges. Firstly, how to effectively manipulate
the neighborhood to increase diversity is still an open question.
The popular ones will submerge the long-tail items if we have a
direct aggregation on all neighbors. Secondly, the over-smoothing
problem [22] occurs when directly stacking multiple GNN layers.
Over-smoothingwould lead to similar representations among nodes
in the graph, dramatically decreasing the accuracy performance.
Thirdly, as seen in Figure 1, the item occurrence in data and the
number of items within each category both follow the power-law
distribution. Training under such distribution would focus on the
popular items/categories, which only constitute a small part of the
items/categories. Meanwhile, the long-tail items/categories are un-
perceptible during the training stage. Researches in graph-based
diversified recommendation is very limited. Early endeavors [50]
assign different probabilities on edges to boost the information
flow of long-tail items. DGCN [49] is the first work to diversify
over graph neural networks. It fails to consider the high-order
connectivities and the long tail categories.

In this paper, we propose DGRec to cope with the previously
mentioned challenges. We design the following three modules. 1.
Submodular neighbor selection firstly integrates submodular
optimization into GNN. It finds a diversified subset of neighbors by
optimizing a submodular function. Information aggregated from
the diversified subset can help us uncover the long-tail items and
reflect them in the aggregated representation. 2. Layer attention
aims to handle the over-smoothing problem. It stabilizes the train-
ing on deep GNN layers and enables DGRec to take advantage of
high-order connectivities for diversification. 3. Loss reweighting
reduces the weight on popular items/categories. It assists the model
in focusing more on the long-tail items/categories. Our contribu-
tions are summarized as follows:

• We design three modules for the diversified recommendation
and propose DGRec that achieves the best trade-off between
accuracy and diversity.
• The three modules can be easily applied to graph neural net-
work based methods to increase recommendation diversity
with a small cost on accuracy.
• We conduct extensive experiments on real-world datasets
to show the effectiveness of DGRec and the influences of
different modules.

The remaining paper is organized as follows. Section 2 gives the
required preliminaries. Section 3 illustrates DGRec in detail and
the three proposed modules for diversification. Section 4 conducts
extensive experiments to evaluate the effectiveness of DGRec, and
discusses the influence of different modules. Section 5 represents
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Figure 1: Long tail distribution in Recommender System on
TaoBao dataset [49].

the most related works for reference, and we conclude DGRec and
discuss future research directions in Section 6.

2 PRELIMINARIES
This section introduces some work preliminaries, including task for-
mulation, graph neural network, and accuracy-diversity dilemma.

2.1 Problem Statement
For diversified recommendation task, we have a set of usersU =

{𝑢1, 𝑢2, ..., 𝑢 |U |}, a set of items I = {𝑖1, 𝑖2, ..., 𝑖 |I |}, and a mapping
function 𝐶 (·) that maps each item to its category. The observed
user-item interactions can be represented as an interaction matrix
R ∈ R |U |×|I | , where 𝑅𝑢,𝑖 = 1 if user 𝑢 has interacted with item
𝑖 , or 𝑅𝑢,𝑖 = 0 otherwise. For a graph based recommender model,
the historical interactions are represented by a user-item bipartite
graph G = (V, E), whereV = U∪I and there is an edge 𝑒𝑢,𝑖 ∈ E
between 𝑢 and 𝑖 if 𝑅𝑢,𝑖 = 1.

Learning from the user-item bipartite graph G, a recommender
system aims to recommend top 𝑘 interested items {𝑖1, 𝑖2, ..., 𝑖𝑘 } for
each user𝑢. The diversified recommendation task requires the top 𝑘
recommended items to be dissimilar to each other. The dissimilarity
(or diversity) of a recommended list is usually measured by the
coverage of recommended categories | ∪𝑖∈{𝑖1,...,𝑖𝑘 } 𝐶 (𝑖) | [28, 49].

2.2 Graph Neural Network
A Graph Neural Network is a deep learning model that operates on
graph structures, and it has achieved great success in the applica-
tion of many real-world tasks with graph-structured data, including
social networks [24, 44], email networks [21] and user-item interac-
tion graphs in recommender systems [42]. A GNN model learns the
representations of node embeddings by aggregating information
from their neighbors, so that connected nodes in the graph struc-
ture tend to have similar embeddings. The operation of a general
GNN computation can be expressed as follows:

e(𝑙+1)𝑢 = e(𝑙)𝑢 ⊕ AGG(𝑙+1) ({e(𝑙)
𝑖
| 𝑖 ∈ N𝑢 }), (1)

where e(𝑙)𝑢 indicates node 𝑢’s embedding on the 𝑙-th layer, N𝑢 is
the neighbor set of node 𝑢, AGG(𝑙) (·) is a function that aggregates
neighbors’ embeddings into a single vector for layer 𝑙 , and ⊕ com-
bines 𝑢’s embedding with its neighbor’s information. AGG(·) and
⊕ can be simple or complicated functions.
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2.3 Submodular Function
A submodular function is a set function defined on a ground set 𝑉
of elements: 𝑓 : 2𝑉 → R. The key defining property of submodular
functions is the diminishing-returns property, i.e.,

𝑓 (𝑣 |𝐴) ≥ 𝑓 (𝑣 |𝐵) ∀𝐴 ⊂ 𝐵 ⊂ 𝑉 , 𝑣 ∈ 𝑉 and 𝑣 ∉ 𝐵. (2)

Here we use a shorthand notation 𝑓 (𝑣 |𝐴) := 𝑓 ({𝑣} ∪𝐴) − 𝑓 (𝐴) to
represent the gain of an element 𝑣 conditioned on the set 𝐴. The
diminishing-returns property naturally describes the diversity of
a set of elements, and submodular functions have been applied to
various diversity-related machine learning tasks with great success
in practice, such as text summarization, sensor placement, and train-
ing data selection [15, 47]. Submodular functions are also applied
as a re-ranking method to diversify recommendations, which is or-
thogonal to the relevance prediction model. Submodular functions
also exhibit nice theoretical properties to be solved with strong
approximation guarantees using efficient algorithms [27].

3 METHOD
In this section, we first present the backbone GNN-based recom-
mender system of DGRec, and then illustrate the three modules to
obtain diversified recommendations during the embedding gener-
ation procedures. The framework of DGRec is shown in Figure 2.
More specifically, it consists of the following components: Submod-
ular neighbor selection, Layer attention and Loss reweighting.

3.1 Overall Training Framework
Based on the user-item bipartite graph G, a GNN-based recom-
mender system generates user/item embeddings by graph neural
networks to predict user’s preference.

3.1.1 Embedding Layer. Similar to the learning representation of
words and phrases, the embedding technique is also widely used
in recommender systems [14, 29]: an embedding layer is a look-up
table that maps the user/item ID to a dense vector:

E(0) =
(
e(0)1 , e(0)2 , . . . , e(0)|U |+|I |

)
, (3)

where e(0) ∈ R𝑑 is the 𝑑-dimensional dense vector for user/item.
An embedding indexed from the embedding table is then fed into a
GNN for information aggregation. Thus it is noted as the "zero"-th
layer output e(0)

𝑖
.

3.1.2 Light Graph Convolution. We utilize the light graph convolu-
tion [14] (LGC) as the backbone GNN layer. It abandons the feature
transformation and nonlinear activation, and directly aggregates
neighbors’ embeddings, and is defined as:

e(𝑙+1)𝑢 =
∑︁
𝑖∈N𝑢

1√︁
|N𝑢 |

√︁
|N𝑖 |

e(𝑙)
𝑖

,

e(𝑙+1)
𝑖

=
∑︁
𝑢∈N𝑖

1√︁
|N𝑖 |

√︁
|N𝑢 |

e(𝑙)𝑢 ,

(4)

where e(𝑙)𝑢 and e(𝑙)
𝑖

are user 𝑢’s and item 𝑖’s embedding at the 𝑙-th
layer, respectively. 1√

|N𝑢 |
√
|N𝑖 |

is the normalization term following

GCN [18]. N𝑢 is 𝑢’s neighborhood that selected by submodular

function as illustrated in Section 3.2. Each LGC layer would gen-
erate one embedding vector for each user/item node. Embedding
generated from different layers are from the different receptive field.
The final user/item representation is obtained by layer attention
illustrated in Section 3.3:

e𝑢 = Layer_Attention
(
e(0)𝑢 , e(1)𝑢 , . . . , e(layer num)

𝑢

)
,

e𝑖 = Layer_Attention
(
e(0)
𝑖

, e(1)
𝑖

, . . . , e(layer num)
𝑖

)
.

(5)

3.1.3 Model Optimization. After we obtain e𝑢 and e𝑖 , the score
of 𝑢 and 𝑖 pair is calculated by dot product of the two vectors. For
each positive pair (𝑢, 𝑖), a negative item 𝑗 is randomly sampled
to compute the Bayesian personalized ranking (BPR) [29] loss. To
increase recommendation diversity, we propose to reweight the
loss to focus more on the long-tail categories:

L =
∑︁
(𝑢,𝑖) ∈E

𝑤𝐶 (𝑖)L𝑏𝑝𝑟 (𝑢, 𝑖, 𝑗) + 𝜆∥Θ∥22, (6)

where 𝑤𝐶 (𝑖) is the weight for each sample based on its category,
which is illustrated in Section 3.4. 𝜆 is the regularization factor. 𝑗 is
a randomly sampled negative item.

3.2 Submodular Neighbor Selection
In GNN-based recommender systems, user/item embedding is ob-
tained by aggregating information from all neighbors. Popular items
would overwhelm the long-tail items. In Figure 2(a), the user’s em-
bedding would be much more similar to books if we aggregate
all the neighbors. At the same time, the necklace information is
overwhelmed in the user’s representation. The submodular neigh-
bor selection module aims to select a set of diverse neighbors for
aggregation. In our setting of GNN neighbor selection, the ground
set for a user node 𝑢 consists of all of its neighbors N𝑢 . Facility
location function [8] is a widely used submodular function that
evaluates the diversity of a subset of items by first identifying the
most similar item in the selected subset S𝑢 to every item 𝑖 in the
ground set (max𝑖′∈S𝑢 sim(𝑖, 𝑖 ′) ∀𝑖 ∈ N𝑢\S𝑢 ) and then summing
over the similarity values. Intuitively, a subset with a high function
value indicates that for every item in the ground set, there exists a
similar item in the selected subset, or in other words, the selected
subset is very diverse and representative of the ground set. The
facility location function is formally defined as follows:

𝑓 (S𝑢 ) =
∑︁

𝑖∈N𝑢\S𝑢
max
𝑖′∈S𝑢

sim(𝑖, 𝑖 ′), (7)

where S𝑢 is the selected neighbor subset of user 𝑢, and sim(𝑖, 𝑖 ′)
is the similarity of 𝑖 and 𝑖 ′, which is measured by Gaussian kernel
parameterized by a kernel width 𝜎2:

sim(𝑖, 𝑖 ′) = exp
(
− ||e𝑖 − e𝑖

′ | |2
𝜎2

)
. (8)

S𝑢 is constrained to having no greater than 𝑘 items for some con-
stant 𝑘 , i.e., |S𝑢 | ≤ 𝑘 . Maximizing the submodular function (7)
under cardinality constraint is NP-hard, but it can be approximately
solved with 1−𝑒−1 bound by the greedy algorithm [27]. The greedy
algorithm starts with an empty set S𝑢 := ∅, and adds one item
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(a) Submodular Neighbor Selection (b) Layer Attention

Attention

(c) Loss Reweight

Figure 2: The framework of DGRec. (a) Submodular neighbor selectionmodule (Section 3.2) finds a diversified subset of neigh-
bors on the embedding space for aggregation. (b) Layer attention module (Section 3.3) alleviates the over-smoothing problem
from high-order connections. (c) Loss reweightingmodule (Section 3.4) adjusts weight for each sample to focus on the training
of long-tail categories.

𝑖 ∈ I\S𝑢 with the largest marginal gain to S𝑢 every step:

S𝑢 ← S𝑢 ∪ 𝑖∗,
𝑖∗ = argmax

𝑖∈N𝑢\S𝑢
[𝑓 (S𝑢 ∪ 𝑖) − 𝑓 (S𝑢 )] . (9)

After 𝑘 steps of greedy neighbor selection, we can obtain the diver-
sified neighborhood subset of each user. The subset is then used
for aggregation. We also note that our framework works for any
choice of a submodular function. We choose the facility location
function as it is generally applicable to numerical features (with cer-
tain similarity metric). We also discuss other choices of submodular
functions in the empirical studies.

3.3 Layer Attention
Different GNN layers generate embeddings based on information
from different subsets of nodes: the 𝑙-th layer would aggregate from
the 𝑙-th hop neighbors. We can reach a diversified embedding by
aggregating from the high-order neighbors. However, the direct
stack of several GNN layers would cause the over-smoothing prob-
lem [22]. As shown in Figure 2(b), layer attention is designed in
DGRec to increase diversity by high-order neighbors and mitigate
the over-smoothing problem at the same time.

For each user/item, we have 𝐿 embeddings generated by 𝐿 GNN
layers. Layer attention aims to get the final representation by learn-
ing a Readout function on [e(0) , e(1) , . . . , e(𝐿) ] by attention [23]:

e = Readout( [e(0) , e(1) , . . . , e(𝐿) ]) =
𝐿∑︁
𝑙=0

𝑎 (𝑙)e(𝑙) , (10)

where 𝑎 (𝑙) is the attention weight for 𝑙-th layer. It is calculated as:

𝑎 (𝑙) =
exp(⟨WAtt, e(𝑙) ⟩)∑L

𝑙 ′=0 exp(⟨WAtt, e(𝑙
′) ⟩)

. (11)

HereWAtt ∈ R𝑑 is the parameter for attention computation. The
attention mechanism can learn different weights for GNN layers
to optimize the loss function. It can effectively alleviate the over-
smoothing problem [23].

3.4 Loss Reweighting
As shown in Figure 1, the number of items within each category
is highly imbalanced and follows the power-law distribution. A

small number of categories contains the most items while leaving
the large majority of categories with only a limited number of
items. Training the model by directly optimizing the mean loss
over all samples would leave the training of long-tail categories
imperceptible. In DGRec, we propose to reweight the sample loss
during training based on its category. As shown in Figure 2(c),
DGRec would decrease the weight relatively if the item belongs to
popular categories, and increase the weight relatively if it belongs
to long-tail categories.

In practice, we borrow the idea of class-balanced loss [9] to
reweight the sample (𝑢, 𝑖) based on the category effective number
of items. The weights𝑤𝐶 (𝑖) in Equation 6 are calculated by:

𝑤𝐶 (𝑖) =
1 − 𝛽

1 − 𝛽 |𝐶 (𝑖) |
, (12)

where 𝛽 is the hyper-parameter that decides the weight. A larger 𝛽
would further decrease the weight of popular categories.

4 EXPERIMENT
In this section,We conduct extensive experiments on two real-world
datasets to answer the following research questions (RQs):
• RQ1: Does DGRec outperform existing methods in the di-
versified recommendation?
• RQ2: How do the hyper-parameters influence DGRec, and
how can we trade off accuracy and diversity in DGRec?
• RQ3: Are the three components inDGRec necessary to boost
diversification?
• RQ4: What is the influence of different submodular func-
tions?

4.1 Experimental Setup
4.1.1 Datasets. To evaluate the effectiveness of DGRec, we con-
duct experiments on two real-world datasets with category infor-
mation. The statistics of the two datasets are shown in Table 1.
• TaoBao [49]: This dataset contains users’ behavior on TaoBao
platform, which was provided by Alimama1. This dataset
contains users’ multiple kinds of behaviors, including click-
ing, purchasing, adding items to carts, and item favoring. All
those behaviors are treated as positive samples. To ensure

1https://github.com/tsinghua-fib-lab/DGCN/tree/main/data
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Table 1: Statistics of the Datasets

Dataset TaoBao Beauty
Users 82,633 8,159
Items 136,710 5,862

Interactions 4,230,631 98,566
Categories 3,108 41

Average Category Size 43.986 139.595

the quality of the dataset, the 10-core setting is adopted, i.e.,
only users/items with at least 10 interactions are retained.
• Beauty [20]: This dataset contains product review infor-
mation and metadata from Amazon2. Following the setting
in [20], the 5-core version is adopted to ensure data quality.

For both datasets, we randomly split out 60% for training, 20% for
validation, and 20% for testing. Validation sets are used for hyper-
parameter tuning and early stopping. We report results on the test
set as the final results.

4.1.2 Baselines. To empirically evaluate and studyDGRec, we com-
pare our model with representative recommender system baselines.
Note that DGRec is compatible with the re-ranking-based methods
such as DPP [5], MMR [4], DUM [2] and Diversified PMF [31]. Thus
we do not compare those methods in the experiments. Selected
baselines are shown as follows:
• Popularity: It is a non-personalized recommendationmethod
that only recommends popular items to users.
• MF-BPR [29]: It factorizes the interaction matrix into user
and item latent factors.
• GCN [18]: It is one of the most widely used graph neural
networks.
• LightGCN [14]: It is the state-of-the-art recommender sys-
tem. LightGCN is a GCN-based model but removes the trans-
formation matrix, non-linear activation, and self-loop.
• DGCN [49]: It is the current state-of-the-art diversified rec-
ommender system based on GNN.

4.1.3 Evaluation Metrics. Following previous works [5, 7, 49], we
use two different kinds of metrics to evaluate the accuracy and
diversity respectively. We aim to get a diversified item set during
the retrieval stage, so Recall and Hit Ratio (HR) are used to measure
the accuracy. Coverage is used to measure diversity, which counts
the number of covered categories of recommended items. To save
space, we only report Top-100 and Top-300 retrieval results. We
can reach the same conclusion for other top-N retrievals.

4.1.4 Parameter Setting. In experiments, we tune all the base-
lines using the validation set and report the results on the test
set. Adam [17] is used as the optimizer. Following the setting of
DGCN, we fix the embedding size to be 32 and randomly sample 4
negative items for each positive user-item pair for a fair comparison.
Other hyper-parameters are tuned by grid search. Early stopping
is utilized to alleviate the over-fitting problem. We stop training if
the performance on validation set does not improve in 10 epochs.

2http://jmcauley.ucsd.edu/data/amazon/links.html
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Figure 3: Accuracy-Diversity trade-off comparison on
TaoBao dataset. The upper-right model is enlarged.

4.2 Performance Evaluation (RQ1)
We report the experiment results in Table 2 (TaoBao dataset) and
Table 3 (Beauty dataset). We have the following observations:
• DGRec generally achieves the best on Coverage@100 and
Coverage@300 except being second to Popularity in terms
of Coverage@300 on the Beauty dataset. Considering Cover-
age@300 on the Beauty dataset, DGRec is just slightly lower
than Popularity. It shows that DGRec can achieve the most
diversified recommendation results.
• Though LightGCN always achieves the best Recall and Hit
Ratio, its Coverage is always the lowest. It shows that Light-
GCN can not achieve an accuracy-diversity balance.
• While achieving the best Coverage, DGRec has similar re-
sults with the second best on Recall and Hit Ratio. It shows
DGRec increases the diversity with a small cost on the accu-
racy, which well balances the accuracy-diversity trade-off.
• DGRec surpasses DGCN on all metrics. It shows DGRec sur-
passes the SoTA model, and the design of DGRec is superior
in both accuracy and diversity.

To make a clearer comparison of all methods, we illustrate the
accuracy-diversity trade-off in Figure 3. Accuracy and diversity are
measured by Recall@300 and Coverage@300, respectively. We can
clearly observe that DGRec stands in the most upper-right position,
which shows DGRec achieves the best trade-off. Compared with
DGRec, all other models with similar accuracy (GCN,MF-BPR) have
an obvious drop in diversity. Compared with LightGCN, DGRec
greatly increases diversity with a small sacrifice on accuracy.

4.3 Parameter Sensitivity (RQ2)
In this section, we study the influence of different hyper-parameters
on DGRec, and how to trade-off between accuracy/diversity.

4.3.1 Layer Number. The layer number is an influential hyper-
parameter in the GNN-based recommender system, which indicates
the number of GNN layers stacked to generate the user/item em-
bedding. We compare our proposed layer attention with the mean
aggregation [14] on both accuracy and diversity. Experimental re-
sults are shown in Figure 4. With the mean aggregation, we can see
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Table 2: Overall comparison on TaoBao dataset, the best and second-best results are in bold and underlined, respectively.

Method TaoBao

Recall@100 Recall@300 HR@100 HR@300 Coverage@100 Coverage@300
Popularity 0.0186 0.0357 0.1496 0.2562 38.2449 75.9837
MF-BPR [29] 0.0487 0.0971 0.3103 0.4889 34.0812 71.8802
GCN [18] 0.0446 0.0923 0.2840 0.4634 37.2577 79.2985
LightGCN [14] 0.0528 0.1063 0.3261 0.5097 32.7069 69.3502
DGCN [49] 0.0394 0.0831 0.2634 0.4369 38.1183 84.4989
DGRec 0.0472 0.0951 0.3026 0.4817 39.0597 89.1684

Table 3: Overall comparison on Beauty dataset, the best and second-best results are in bold and underlined, respectively.

Method Beauty

Recall@100 Recall@300 HR@100 HR@300 Coverage@100 Coverage@300
Popularity 0.1012 0.2096 0.1833 0.3124 16.0213 27.9336
MF-BPR [29] 0.2310 0.3863 0.3404 0.4966 15.8728 25.6659
GCN [18] 0.2388 0.3897 0.3423 0.3897 16.5311 25.5634
LightGCN [14] 0.2517 0.4205 0.3688 0.5318 15.0203 23.9421
DGCN [49] 0.2395 0.3790 0.3418 0.4792 18.2876 26.9694
DGRec 0.2399 0.3915 0.3420 0.5021 19.0557 27.5704

Recall@300 drops quickly with the increase of layers. It reflects the
well-known over-smoothing problem [22] in GNN. The increase
in Coverage@300 verifies our hypothesis that we can obtain a di-
verse embedding representation by adding more information from
higher-order connections. However, mean aggregation does not
make an effective trade-off between accuracy and diversity. The
sharp drop on Recall@300 makes the increased diversity mean-
ingless. With the proposed layer attention, DGRec does not suffer
from the over-smoothing problem and achieves gradually increased
Recall@300 with the increase of layers. It shows layer attention
can effectively learn different attention weights for each layer to fit
the data. At the same time, DGRec generally achieves a high Cov-
erage@300. It shows the layer attention module can retain a good
performance on diversity with a different number of layers. When
mean aggregation and layer attention achieve similar Recall@300 (2
layers), Coverage@300 of layer attention is much larger than mean
aggregation. The case is similar if we compare Recall@300 when
they achieve similar Coverage@300. It shows layer attention used
in DGRec can achieve a much better accuracy diversity trade-off
than mean aggregation.

4.3.2 Hyper-parameter 𝛽 . This hyper-parameter is introduced in
Section 3.4 to control the weight on loss calculated on each sam-
ple. With a larger 𝛽 , DGRec would concentrate more on the items
that belong to long-tail categories. The accuracy-diversity trade-off
diagram is shown in Figure 5. With the increase of 𝛽 , accuracy grad-
ually drops, and diversity increases. It indicates focusing on the
training of long-tail categories can greatly increase diversity. We
can also observe that the accuracy drops slowly with the increase in
diversity. When 𝛽 = 0.95,DGRec achieves a Coverage@300 of more
than 105 and Recall@300 of more than 0.086. Experimental results
show that by focusing on the training of items belonging to the
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Figure 4: Layer combination experiments on TaoBao dataset.
Mean combines embedding learned from different layers by
mean average. Layer attention combines these embeddings
by the attention module illustrated in Section 3.3.

long-tail categories, 𝛽 can be used effectively to balance between
diversity and accuracy.

4.3.3 Hyper-parameter 𝜎 and 𝑘 . 𝜎 and 𝑘 are introduced in Sec-
tion 3.2. 𝑘 is the budget for neighbor selection, and 𝜎 is used to
compute the pair-wise similarity of neighbors. Experimental results
are shown in Figure 6.

We can observe that DGRec is not that sensitive to 𝜎 . DGRec has
a stable good performance on both Recall@300 and Coverage@300
with 𝜎 varies from 0.01 to 100. With different 𝜎 , we can also see
the trade-off between accuracy/diversity. When Coverage@300
achieves the best at 10, Recall@300 is the worst.

𝑘 is the number of neighbors for GNN aggregation. Neighbors
are selected by submodular function to maximize diversity. As we
can see from Figure 6, Recall@300 gradually decreases, and Cov-
erage@300 increases with the increase of 𝑘 . Submodular neighbor
selection selects a diversified subset of neighbors. With a larger
set, DGRec can aggregate from more diversified neighbors, which



DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

0.087 0.088 0.089 0.090 0.091 0.092 0.093
Accuracy (Recall @ 300)

90.0

92.5

95.0

97.5

100.0

102.5

105.0

107.5

Di
ve

rs
ity

 (C
ov

er
ag

e 
@

 3
00

)

=0.90
=0.91
=0.92
=0.93
=0.94
=0.95

Figure 5: Accuracy-diversity trade-off by loss reweighting.
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Figure 6: Parameter sensitivity of 𝜎 and 𝑘 . 𝜎 controls the sim-
ilarity computation and 𝑘 is the number of selected neigh-
bors.

would lead to an increase in diversity. At the same time, accuracy
would drop as a trade-off. We can also observe that Recall@300
does not drop much with the increase in diversity.

Experiments on 𝜎 and 𝑘 show DGRec is not sensitive to the sub-
modular selection module, and DGRec would not have a dramatic
change because of this module. Meanwhile, this module can also
balance accuracy and diversity by 𝜎 and 𝑘 .

4.4 Ablation Study (RQ3)
In this section, we perform an ablation study on the TaoBao dataset
by removing each of the three modules. Experiment results are
shown in Table 4. We can have the following observations:
• The intactDGRec achieves the best C@300. The combination
of proposed modules can effectively increase diversity.
• When we remove the submodular neighbor selection mod-
ule, C@300 drops from 89.1684 to 84.9129 while there is
only a tiny difference on Recall@300 and HR@300. It shows
the submodular neighbor selection module can increase the
diversity with minimal cost on accuracy.

Table 4: Ablation study on TaoBao dataset. We showDGRec’
performance when removing each of the modules.

Method R@300 HR@300 C@300
DGRec 0.0951 0.4817 89.1684

w/o Submodular selection 0.0982 0.4869 84.9129
w/o Layer attention 0.1009 0.4976 82.9553
w/o Loss reweighting 0.0886 0.4612 79.3286

• When we remove the layer attention module, C@300 de-
creases with the increase on R@300 andHR@300. It indicates
layer attention balances accuracy and diversity.
• Whenwe remove the loss reweightingmodule, R@300, HR@300,
and C@300 all drop greatly. The loss reweighting module
has the largest impact on DGRec because it not only bal-
ances the training on long-tail categories but also guides the
learning of layer attention.

4.5 Choice of Submodular Functions (RQ4)
In this section, we compare the influence of different submodu-
lar functions on model performance. We use two commonly used
submodular functions to replace the facility location function. Ex-
perimental results are shown in Figure 7. Model A utilizes bucket
coverage submodular function [39]. Before selection, it clusters
on each dimension and divides each dimension into buckets. The
submodular function counts the gain on covered buckets. Model B
utilizes category coverage submodular function [39]. This function
counts the gain on covered categories. Model C is DGRec, which
utilizes the facility location function. Among the three models,
model A and model C do not need item category information. They
directly select neighbors based on neighbor embedding. Model B
needs item category information to be able to compute category
coverage gain during each selection.

From Figure 7, we observe that compared with the other two
models, model A has much higher performance on Recall@300 and
much lower performance on Coverage@300. It shows the selection
of submodular functions has an influential impact on performance.
Model B and model C achieve similar results with respect to Re-
call@300 and Coverage@300. It indicates the embedding learned
by model C can accurately capture the category information, and
the facility location function enlarges the category coverage dur-
ing neighbor selection. We select the facility location function in
DGRec for two reasons. Firstly, it can nearly achieve the best di-
versity compared with other methods. Secondly, it does not need
category information during aggregation, which can enlarge the
application scenarios when the category information is unobserved.

5 RELATEDWORK
In this section, we introduce the related work of DGRec, which
includes Graph Neural Network based recommender system and
diversified recommendation.
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and C: facility location function.

5.1 Graph Neural Network based
Recommender System

With GNN showing excellent performance on graph-structured
data, GNN-based recommender systems [34] are attracting more
and more attention. These methods represent the user’s historical
interactions as a user-item bipartite graph with easy access to high-
order connectivity. GCMC [3] utilizes encoder-decoder structure
on graph to complete interaction matrix. SpectralCF [48] is the first
to study the spectral domain of the user-item bipartite graph. It pro-
poses spectral convolution operation to find the latent interactions,
and greatly increase the recommendation performance on cold-start
items. PinSAGE [46] designs a special random walk to accelerate
the learning on the large-scale bipartite graph, which is applied
on the Pinterest platform. NGCF [37] directly aggregates informa-
tion from neighbors in the bipartite graph, and explicitly injects
the collaborative signal in the learned embedding. LightGCN [14]
simplifies NGCF by removing the overhead computation of linear
transformation and non-linear activation. The simplified operation
not only achieves better performance but also reduces the train-
ing time. UltraGCN [25] takes a further step in simplifying graph
convolutional network. It skips the finite layers of aggregation, and
directly computes the infinite convolution stage as a constraint
during training. MetaKRec [43] reconstructs the knowledge graph
as edges between items before graph convolution.

Previous GNN-based recommender systems nearly all focus on
increasing accuracy while leading to poor diversity. DGRec is also
built upon Graph Neural Network. The proposed three modules
can be added to previous GNN-based recommender systems and
make up for their diversity shortcomings.

5.2 Diversified Recommendation
Diversified recommendation aims to recommend users with a diver-
sified subset of items to help users find unexplored interests. Diver-
sified recommendation is first proposed by Ziegler et al. [51]. They
use a greedy method to select items during the retrieval procedure.
Zhou et al. [50] points out the accuracy/diversity dilemma, and pro-
pose HeatS/ProbS methods to choose the information propagation
probability for each edge in the user/item bipartite graph. Cheng
et al. [7] introduced a new pairwise accuracy metric and a normal-
ized topic coverage diversity metric to measure the performance of
accuracy and diversity. Then several re-ranking-based methods are

proposed to diversify recommendation lists after the retrieval pro-
cedure. DUM [2] uses the submodular function to greedy guide the
selection of item selection in the re-ranking procedure to maximize
the item’s utility. Diversified PMF [31] computes 𝑙2 loss between
items as diversity. Determinantal point process (DPP) [5] re-ranks
items to achieve the largest determinant on the item’s similarity
matrix. Antikacioglu and Ravi [1] formulate a recommender sys-
tem as a subgraph selection problem from diversified super graphs,
and they use minimum-cost network flow methods to achieve a
fast algorithm in diversification. Teo et al. [33] assign global/local
diversification weights in the training of recommender systems.
CB2CF [16] designs sliding spectrum decomposition to capture
user’s diversity perception over long item lists. Through online
testing, CB2CF shows diversification can increase the number of
engagements and time spent on the Xiaohongshu platform. DD-
Graph [45] selects implicit edges by quantile progressive candi-
date selection and re-constructs the user-item bipartite graph to
increase diversity. DGCN [49] is the first GNN-based diversified
recommendation method. It selects node neighbors based on the
inverse category frequency for diverse aggregation and further uti-
lizes category-boosted negative sampling and adversarial learning
to diverse items in the embedding space.

DGRec focuses on diversifying the GNN-based recommender
system in the retrieval stage. Among the previous methods, the
re-ranking-based methods such as DPP and DUM are compatible
with our method. DGCN is the most similar work with DGRec. We
both focus on how to increase diversity on GNN-based methods.

6 CONCLUSIONS
In this paper, we target diversifying GNN-based recommender sys-
tems with diversified embedding generation. We design three mod-
ules that can be easily applied to GNN-based recommender systems
to achieve diversification with minimal cost on accuracy. Based on
the three modules, we propose DGRec. When considering diver-
sity, it surpasses the state-of-the-art diversified recommender sys-
tem. It also achieves comparable accuracy with the most advanced
accuracy-based recommender system. DGRec enables the trade-off
between accuracy and diversity by several hyper-parameters. Ex-
tensive experiments on real-world datasets illustrate the influence
of different modules.
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